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Iterative LQG Controller Design

Through Closed-Loop Identification
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This paper presents an iterative LQG controller design ap-

proach for a linear stochastic system with an uncertain open-

loop model and unknown noise statistics. This approach consists

of closed-loop identification and controller redesign cycles. In

each cycle, the closed-loop identification method is used to
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identify an open-loop model and a steady-state Kalman filter
gain from closed-loop input/output test data obtained by using
a feedback LQG controller designed from the previous cycle.
Then the identified open-loop model is used to redesign the
state feedbacl_ The state feedback and the identified Kalman
filter gain are used to form an updated LQG controller for the
next cycle. This iterative process continues until the updated
controller converges. The proposed controller design is demon-
strated by numerical simulations and experiments on a highly
unstable large-gap magnetic suspension system.

1 Introduction

Classical Linear Quadratic Gaussian (LQG) controllers are
designed by solving two separate, but dual problems: the Linear
Quadratic Regulator (LQR) design and Kalman filter (i.e., opti-
mal state estimator) design. The performance of the controllers
relies on an accurate open-loop model for the LQR and an
accurate estimate of the measurement and process noise statis-
tics for the Kalman filter. It is difficult to obtain an accurate

model through analysis for some systems, and an accurate esti-
mate of the noise statistics through testing for most systems.
Furthermore, the noise statistics may be related to the controller
if part of the measurement and process noise are generated by
the sensor and actuator amplifiers, respectively. To overcome
these problems, we present an iterative LQG controller design
approach for a linear stochastic system with an uncertain open-
loop model and unknown noise statistics. This approach consists
of closed-loop identification and controller redesign cycles. The
closed-loop identification method can simultaneously identify
the open-loop model and the Kalman filter gain under the
closed-loop operation with a known dynamic controller. Then
the identified open-loop model is used for the LQR design. The
LQR and the identified Kalman filter gain are used to form the
updated LQG controller for the next closed-loop identification.
The process continues until the updated LQG controller con-
verges.

For system identification, several methods (Chen et al.,
1992a, 1992b, 1993; Phan et al., 1991; Juang et al., 1993) have
been introduced recently to identify the state-space model of a
linear system and the Kalman filter. Typically the system is
under open-loop excitation with an uncorrelated white noise
input. For an unstable system, the input/output data are not
available while it is under an open-loop operation. To directly
use these methods, we have to design a controller and an input
signal for the closed-loop system so that the input signal to the
open-loop system is almost white. Unfortunately, this is very
difficult. On the other hand, some identification methods (Phan
et al., 1992; Liu and Skelton, 1990) have been proposed recently
for identifying a system under closed-loop operation. However,
they have several shortcomings. First, the Kalman filter gain
cannot be simultaneously identified because they axe applied
only for deterministic systems. In Phan et al. (1992), no re-
cursive form was derived for computing the open-loop system
Markov parameters, and in Liu and Skelton (1990), the ap-
proach is based on system pulse response. In this paper, a re-
cursive form for computing the open-loop system and Kalman
filter Markov parameters is derived for stochastic systems with
random excitation.

For a system under closed-loop operation, a novel approach
for identifying the open-loop model and Kalman filter gain is
presented. First, we derive the relation between closed-loop
state-space and AutoRegressive with eXogeneous (ARX) mod-
els for stochastic systems. From the derivation, it can be seen
that a state-space model can be represented by an ARX model
if the order of the ARX model is chosen large enough. Since
the relation between the input/output data and the system pa-
rameters of an ARX model is linear, a linear programming
approach like least-square methods, can be used for the ARX

model parameter estimation. Second, we derive the algorithm
to compute the open-loop system and Kalman filter Markov
parameters from the estimated ARX model parameters. In this
step, we first compute the closed-loop system and Kalman filter
Markov parameters from the estimated ARX model parameters.
Then the open-loop system and Kalman filter Markov parame-
ters are computed from the closed-loop system and Kalman
filter Markov parameters and the known controller Markov pa-
rameters. Third, the state-space model for the open-loop system
isrealizedfrom theopen-loopMarkov parametersthroughthe

singularvaluedecompositionmethod (Chcn etal.,1984;Juang
and Pappa,1985).Finally,theKalman filterfortheopen-loop

system can be estimatedfrom the realizedstate-spacemodel
and theopen-loopKalman filterMarkov parametersthrougha

least-squareapproach.
With thisclosed-loopidentification,an iterativeLQG control-

lerdesigncan be performed.Sincethe Kalman filterused in
thisLQG controllerisobtaineddirectlyfrom theclosed-loop
identification,itautomaticallytakesintoaccountthe effectof
the controlleron the noisestatistics.The LQR tendstoreject

the processnoiseand the Kalman filtertendsto filterout the
measurement noise.Therefore,the closed-loopidentification

can improve the LQG designand an updatedLQG controller
can enhance the closed-loopidentificationin the next cycle.
Aftera certainnumber of iterations,the LQG controllerwill

converge.
A similar approach is presented by Liu and Skelton (1990).

As compared to that approach, this paper has the following
contributions. First, the proposed method is developed under
the stochastic framework rather than a deterministic one. Sec-
ond, the Kalman filter gain is also identified so that it can be
used for state estimation directly. Third, random excitation
rather than pulse response is used for the closed-loop identifica-
tion. Finally, since the Kalman filter gain is identified, LQR
state feedback is used rather than output feedback. Numerical

and experimental examples are provided to illustrate and vali-
date this controller design.

2 Closed-Loop State-Space and ARX Models Rela-

tionship

Since the relation between the input/output data and the
model parameters of a state-space model is nonlinear, parameter
estimation of a state-space model from input/output data is
a nonlinear programming problem. Nonlinear programming is
difficult to solve in general and involves complex iterative nu-
merical methods. The convergence and uniqueness of the solu-
tion are also not guaranteed. Unlike a state-space model, the
ARX model has a linear relationship between its model parame-
ters and input/output data. Therefore, linear programming can
be used for identifying the ARX model. After obtaining the
ARX model, a state-space model can be developed based on the
relation between these two models. In this section, the relation
between a closed-loop state-space model and an ARX'l'nodel is
derived by using z-transforms.

A finite-dimensional, linear, discrete-time, time-invariant

system can be modeled as:

Xk+! = AX, q- BUk + Wk (1)

Yk = Cxk + v, (2)

where x E R n×_, u E R "x J, y E R "x _are state, input, and output
vectors, respectively; w, is the process noise, v, the measurement
noise; [A, B, C] are the state-space parameters. Sequences w,
and Vk are assumed gaussian, white, zero-mean, and stationary
with covariance matrices W and V, respectively. One can derive
a steady-state filter innovation model (Haykin, 1991 ):

:'k+l = A.f_ + Buk + AKek (3)

yk = C,f, + ek. (4)
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where £k is the a priori estimated state, K is the steady-state
Kalman filter gain, and et is the residual after filtering. The
existence of K is guaranteed if the system is detectable and (A,
W u2) is stabilizable (Goodwin and Sin, 1984). The advantage
of using the filter innovation model in the. closed-loop identifi-
cation is that one can directly identify the Kaiman filter gain
without estimating the covariance matrices of both process and
measurement noise which usually are difficult to be obtained
from test data (Chen and Huang, 1994).

Similarly, any kind of dynamic output feedback controller
can be modeled as:

Pk+l = Aapk + Bdyk (5)

uk = Cdpk + Dayk + rk, (6)

where Aa, Ba, Ca, and Da are the system matrices of the dynamic
output feedback controller, Pk the controller state and rk is the
open-loop input to the closed-loop system. Combining (3) to
(6), the augmented closed-loop system dynamics becomes

where

_k+J = Acrlk + Bcrk + A_Kcek (7)

Yk = Ccr/k + ek, (8)

Ac = BaC Aa J '

AK + BDd]a_Kc = Ba J , cc = [c o], (9)

and 77, = [gl]. It is noted that K_ can be considered as the

Kalman filter gain for the closed-loop system and the existence
of the steady-state K_ is guaranteed when the closed-loop system
matrix A_ is nonsingular. Substituting (8) into (7) yields

Ok+l = Arh + B_rk + A_Kcyk, (10)

where A = A_ - A_K_C_ and is guaranteed to be asymptotically
stable because the steady-state Kalman filter gain K_ exists. The
z-transform of (10) and (8) yields

77(z) = (z -X)-t(A_K_y(z) + Bcr(z)) (11)

y(z) = C:I(z) + e(z). (12)

Substituting (11) into (12), one has

y(z) = C_(z - X)-_(A_K_y(z) + B:(z)) + e(z). (13)

The inverse z-transform of (13) with (z - .4)-' = E ,_-lz-_
i=l

yields

Yk = _. Cc_i-tAcKcyk-, + _, Cc,4i-IB_rk-i + 'k. (14)
i--I i_l

Since ,4 is asymptotically stable, ,_ _ 0 if i > q for a sufficient
large number q. Thus (14) becomes

q q

Yk _ _. aiyk-i -t- Z birk-i -F ek (15)
i-- I i-- I

where

ai = CcXi-IA_K_, b_ = C_Xi-IB_. (16)

The model described by (15) is the ARX model which di-
rectly represents the relationship between the input and output
of the closed-loop system. The coeffÉcient matrices a_ and b_
can be estimated through least-square methods from random
excitation input rk and the corresponding output yk- From (15)

by neglecting ek, the least-square problem becomes _r = [a_
bl "" aq b¢]_ r or _ = _O, where

I yr r r yr_j r

rq-i
T q

_= yr+, r,+, yr r r

yLz rrj-l YL2 rLa

... yr rr 7

•.. yl rI[".. _ . ,

... yr_¢ rr_, j

= [Yq+_ Yq+2 "'" y_]r, 0 = [a_ b, a2 b: ... aq
b¢] r, and I is the number of data points. The integer l has to
be large enough so that the <I,matrix has more rows than col-
umns. The batch least-square solution is

0 = (or_)-_r( (17)

Therefore, solving for an ARX model simply involves solving
a linear programming problem involving an over determined
set of equations.

Substituting
has

3 Markov Parameters and State-Space Realization

In the previous section, an ARX model, which represents a
closed-loop system, is identified from the input/output data
through the least-square method. With the known controller
dynamics, the estimated ARX model can be transformed to an
open-loop state-space model by the following steps. First, the
closed-loop system and Kalman filter Markov parameters are
calculated from the estimated coefficient matrices of the ARX
model. Second, the open-loop system and Kalman filter Markov
parameters are derived from the closed-loop system Markov
parameters, the closed-loop Kalman filter Markov parameters,
and the known controller Markov parameters. Third, the open-
loop state-space model is realized by using singular-value de-
composition for a Hankel matrix formed by the open-loop sys-
tem Markov parameters. Finally, an open-loop Kalman filter
gain is calculated from the realized state-space model and the
open-loop Kalman filter Markov parameters through least-
squares.

The z-transform of the open-loop state-space model (3) yields

,f(z) = (z - A)-_(Bu(z) + AKe(z)i. (18)

(18) to the z-transform of the output Eq. (4), one

y(z) = C(z - A)-'(Bu(z) + AKe(z)) + e(z)

= _ Y(k)z-_u(z)+ _ N(k)z-_e(z), (19)
k_l k_O

where Y ( k ) = CA _-_ B are the open-loop system Markov pa-
rameters; N(k) = CA_-_AK, for k = 1..... 0o, open-loop
Kalman filter Markov parameters, and N(0) = I which is an
identity matrix. Similarly, for the dynamic output feedback con-
troller (5) and (6) and the closed-loop state-space model (7)
and (8), one can derive p-

-u(z) = _. Yd(k)z-_y(z) + r(z) (20)
k-O

y(z) = _ r¢(k)z-_r(z) + _ N_(k)z-_e(z), (21)
kml kmO

where Yd(0) = Da, and Yd(k) = CdA_-_Bd, for k = 1..... "_,
are the controller Markov parameters; Y_(k) = C¢A_-_B_ the
closed-loop system Markov parameters; and N_(0) = I, N¢(k)
= C_A_-_A_K_, for k = i ..... _, the closed-loop Kalman filter
Markov parameters.

Closed-Loop System and Kalman FHter Markov Parame-
ters. The z-transform of the ARX model (15) yields

q q

(I - _ a,z-')y(z) = _ b,z-'r(z) + e(z). (22)
ial iml
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Applying long division to (22), one has

y(z) = (blz -I + (b2 + a.bl)z -2 + (b3 + at(b2 + atb_)

+ a2bl)z -3 + ...)r(z) + (I + ajz -1 + (atal + a2)z -2

+ (a_(alal + a2)+ a2al +a3)z -3 + ... )_(Z).

After comparing with (21), the closed-loop system and Kalman
filter Markov parameters can be recursively calculated from the
estimated coefficient matrices of the ARX model,

k

Yc(k) = bk + _ a_Yc(k - i) (23)
t-- I

k

N_(k) = _ a,N,(k - i). (24)
iml

It is noted that Y_(0) = 0, N,(0) = I, and ai = bi = 0, when
i > q. One may obtain (23) and (24) from (16) and the defini-
tion of the Markov parameters (Phan et al., 1991; Juang et al.,
1993). However, the derivation is much more complex.

Open-lamp System and Kalman Filter Markov Parame-
ters. Next, the open-loop system and Kalman filter Markov
parameters can be derived from the closed-loop system Markov
parameters, the closed-loop Kalman filter Markov parameters,
and the known controller Markov parameters. Substituting (20)
into (19) yields

m

y(z) = (_ Y(k)z-k)(_, Ya(k)z-*y(z))
k_l kmO

+ _ Y(k)z-kr(z) + _ N(k)z-k¢(z) = _ OtkZ-ky(z)

k--I k-O k--I

ca

+ _, Y(k)z-kr(z) + _ N(k)z-_¢(z), (25)
k-I k-O

ca

where ak = _ Y(i)Ya(k - i). Rearranging (25), one has
i--l

(I- _ ot_Z-_)y(z)
k_l

= _, Y(k)z-kr(z) + _ N(k)z-k¢(z). (26)
kll kiO

Similarly, one can apply long division to (26), and then com-
pare it with (21), to describe the closed-loop system Markov
parameters recursively in terms of the open-loop system and
the controller Markov parameters.

i

Y_(j) = Y(j) + _, akY_(j -- k)
k_l

j k

= Y(j) + _. _ Y(i)Yd(k - i)Y_(j - k) (27)
k_l i_l

And the closed-loop Kalman filter Markov parameters can be
recursively expressed in terms of the open-loop system Markov
parameters, the open-loop Kalman filter Markov parameters,
and the controller Markov parameters as follows:

/

N_(j) = N(j) + _, ot_Nc(j - k)

/ k

= N(j) + _ _, Y(i)Yd(k - i)N_(j - k). (28)
k_l i_l

Rearranging (27) and (28), one has
j t'

Y(j) = Y_(j) - _ _ Y(i)Yd(k - i)Y_(j - k) (29)
k_l i_l

y k

N(j) = N_(j) - _ _ Y(i)Yd(k - i)N¢(j - k). (30)
kml i--I

Equations (29) and (30) show that one can recursively calculate
the open-loop system and Kalman filter Markov parameters
from the closed-loop system Markov parameters in (23), the
closed-loop Kalman filter Markov parameters in (24), and the
known controller Markov parameters Y_(k) = C4A_-_B_. It is
noted that Y¢(0) = 0 and N_(0) = 1. One can easily verify (29)
and (30) from (9), and also from the definition of the Markov
parameters.

State-Space Realization. The open-loop state-space model
can be realized from the open-loop system Markov parameters
through the Singular Value Decomposition (SVD) method
(Chen, 1984; Juang and Pappa, 1985). The first step is to form
a Hankel matrix from the open-loop system Markov parameters,

Y(j) Y(j+ 1) .-- Y(j+B)

n(j)= /Y(j +1): Y(j +2). "-."" v(j+ _ + 1)I:
LY(J+3") Y(j+T +11 "'" Y(./+_'+/_)..I

(31)

where Y(j) is the j-th Markov parameter. For a noise free
system, if the arbitrary integers B > n, and 3' > n (the order
of the system), the Hankel matrix H(j) is of rank n, From the
measurement Hankel matrix, the realization uses the SVD of
H( 1 ), H( 1 ) = U_V r, to identify a n-th order discrete state-
space model as

A = _.2'nUrH(2)V_2m,

B = _t/2vrrd C = pr[f_|/2............. (32)

where matrix Y., is the upper left hand n x n partition of X
containing the n largest singular values along the diagonal. Ma-
trices U, and V, are obtained from U and V by retaining only
the n columns of singular vectors associated with the n singular
values. Matrix E= is a matrix of appropriate dimension having
m columns, all zero except that the top m x m partition is an
identity matrix. E, is defined similarly.

Open-Loop Kaiman Filter Gain. Once the open-loop A
and C are obtained, one can easily calculate the open-loop Kal-
man filter gain from the open-loop Kalman filter Markov param-
eters N(k) = CAkK in a least-square sense as follows

K--(oro)-'O N':k)J' whereO= -- . (33)

The integer k has to be large enough so that the matrix O has

more rows than columns. The identified Kalman filter gain can
be used directly for state estimation.

4 Iterative LQG Controller Design .-

Classical LQG controllers are designed by solving two sepa-
rate, but dual problems: the LQR design and Kalman filter
design. Here, the Kalman filter gain can be simultaneously ob-
tained with the open-loop state-space model through the closed-
loop identification. Only the LQR design based on the identified
open-loop model needs to be solved. The performance index
for the LQR problem is defined as

P. I. = _ yrQyk + urRuk = _ xrcrQcxk + urRu, (34)
k=l k_'l

where weighting matrices Q and R are design parameters. We
can summarize the iterative LQG controller design as follows:

1. Use the a priori open-loop model and arbitrary covari-
ante matrices of the measurement and process noise to design
the LQR and Kalman filter. Then, calculate the controller Mar-
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Fig. 1 Large-angle magnetic suspension'test facility (LAMSTF)
configuration

kov parameters. The weighting matrices Q and R for the LQR
chosen here will remain the same in the following iterations.

2. Apply random excitation input to the closed-loop system
and record the closed-loop input/output data.

3. Estimate the coefficient matrices of the closed-loop ARX
model by using (17).

4. Calculate the closed-loop system and Kalman filter Mar-
kov parameters by using (23) and (24).

5. Calculate the open-loop system and Kalman filter Mar-
kov parameters by using (29) and (30).

6. Realize the open-loop state-space system matrices [_,
_, C'] by using (31) and (32).

7. Estimate the open-loop Kalman filter gain /( by using
(33).

8. Obtain the LQR feedback gain F by solving the corre-
sponding Riccati equation based on the identified open-loop
model.

9. Form the updated LQG controller in (5) and (6) by
using A, = _ - _F - ,_/_', B_ =/i/_, C, = -F, and D, = 0.

10. Calculate the updated controller Markov parameters and
check the convergence of the controller by

6 = _ IlYa(k)u_ - Ya(k)m .... 112. (35)
k-0

If 6 is greater than a desired value, go back to step 2, otherwise
stop.

5 Numerical and Experimental Example

The proposed iterative LQG controller design has been ap-
plied to control design of the Large-Angle Magnetic Suspension
Test Facility (LAMSTF) (Groom and Britcher, 1992; Groom
and Schaffner, 1990) developed in NASA Langley Research
Center (see Fig. 1 ). The LAMSTF is a laboratory-scale research
project to demonstrate the magnetic suspension of objects over
wide ranges of attitudes. This system represents a scaled model
of a planned Large-Gap Magnetic Suspension System. The
LAMSTF system consists of a planar array of five copper elec-
tromagnets which actively suspend a small cylinder with a per-
manent magnet core. The cylinder is a rigid body and has six
independent degrbes of freedom, namely, three displacements
(x, y, and z) and rotations (pitch, yaw, and roll). Currents in
the electromagnets generate a magnetic field which produces a
net force and torque on the suspended cylinder. The roll of the
cylinder is uncontrollable, and is assumed to be motionless.
Five pairs of the LEDs and light receivers are used to indirectly
sense the pitch and yaw angles, and three displacements of the
cylinder's centroid. Therefore, .the control inputs to the system
consist of five currents sent into five electromagnets and the

system outputs are fiv e voltage signals measured from five
photo detectors. The forces on the cylinder are, in general, non-
linear functions of space and current. Therefore, only the linear
t_me-invariant perturbed motion about an equilibrium state is
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Simulated step response with the initial LQG controller

considered. Because it is difficult to accurately model the mag-
netic field and its gradients, the analytical model contains some
modeling errors. Therefore, the performance of the LQG con-
troller based on the analytical model alone is unsatisfactory.

The system matrices of the analytical model are shown in
the appendix. The eigenvalues of the system matrix indicate
that the LAMSTF system includes highly unstable real poles
(about 10 Hz ) and low-frequency oscillatory modes (about 0.16
I-Iz). For both numerical simulation and experiment, the sam-
piing rate is 250 Hz. The performance index used for the LQR
design is also shown in the Appendix. The step command for
all simulations and experiments is 0.02 radian for pitch and
yaw, and 0.2 mm for x, y, and z.

In the numerical simulation, the analytical model is used as
the true model. In each iteration, the ratios of the process and
measurement noise to the corresponding signal are 2 and I
percent, respectively. To simulate modeling error and unknown
noise statistics, the initial LQG controller is designed by using
an altered model of which each parameter is 5 percent greater
than the corresponding parameter of the analytical model and
guessed covariance matrices of noise W = 101,o×,o and V =
Is×s. The simulated step response with this initial controller for
the pitch, yaw, x, y, and z is shown in Fig. 2. It is clear that
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Fig. 3 Comparison of the simulated step response with the iteretive
LQG controller
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the result is very poor. After performing the first iteration of
the proposed iterative LQG controller design, the step response
shown in Fig. 3 is greatly improved. The performance is further
improved slightly in the following iterations. Figure 4 shows
how the controller converges by comparing the ( 1, 1 ) element
of the controller Markov parameters.

For a noise free system, the exact open-loop model can be
obtained after the first closed-loop identification and no further
iteration is required. In this case, the identified Kaiman filter
gain becomes the dead-beat observer gain (Phan et al., 1991;
Juang et al., 1993). For a noise corrupted system, iterations are
required to update the open-loop model and the Kalman filter
gain until the iterative LQG controller converges. Although
the numerical simulations show that the iterative controller can

converge quickly, the required conditions to guarantee the con-
vergence need further study.

In the experiments, the analytical model and guessed covari-
ance matrices of noise W = I011o×,o and V = 15×_are used to
design the initial LQG controller. The experimental step re-
sponse with this initial controller is also very poor. The experi-
mental step responses for the first three iterations are compared
in Fig. 5 to demonstrate how the step response is improved with
iteration. In each iteration, the open-loop system model and the
Kalman filter gain are updated through the closed-loop identifi-
cation from experimental data. The experimental step response
improves with each iteration, similar to the simulated cases.
The experimental steady-state errors, however, do not go to
zero in each case. This is due to drift in the sensor zero between

experiments. The system's dynamics have been found to be
insensitive to these small changes in the operating point. The
results show that the proposed iterative LQG controller design
is very effective for controlling this highly unstable magnetic
suspension system.
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Fig. 5 Comparison of the testing step response with the tterative LQG
controller

suspension system is used to validate this controller design.
Both numerical simulations and test data show that the control-

ler converges quickly and is very effective when the system is
subjected to modeling error and unknown noise statistics.
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6 Conclusion

In contrast to most existing LQG controller designs of which
the great majority solve two separate, but dual problems: the
LQR and Kalman filter design, this paper proposes an iterative
LQG controller design approach. A closed-loop identification
method is developed to update the open-loop state-space model
and the Kalman filter gain simultaneously from the closed-
loop input/output test data. The method is derived under the
stochastic framework, taking into account the effects of process
noise as well as measurement noise. For a noise free system,
the exact open-loop model can be obtained after the first closed-
loop identification and the identified Kalman filter gain becomes
the dead-beat observer gain. For a noise corrupted system, itera-
tions are required to update the open-loop model and the Kal-
man filter gain from testing until the iterative LQG controller
converges. In each iteration, since the Kalman filter gain is
identified directly from test data, the LQG design is simplified
to be an LQR design. A highly unstable large-angle magnetic
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APPENDIX

The analytical model of the large-angle magnetic suspension
test facility is

.¢ = A,.x + B,,,u (A1)

y = C,,x (A2)
x

wherex = {_},A,. = r°_×_ Is_'l B= r°5_,1,A:, A,, j, = and Cm = [Ct
t B2 J

0_xs ]. The state variable xp includes pitch and yaw angles and
three linear displacements of the cylinder's centroid. The matri-
ces A2_, Azz, Bz, and C, are

The eigenvalues of the system matrix A,, are __.58.78, "-57.81,
__.9.78, --+j7.97, and -j0.96. The matrix C, which relates the
sensor output voltage to the displacement can be obtained from
calibration and is assumed known. To recover the displacement
from the sensor output volt,3,g.e, one can use xp = C'f'y.

The performance index for the state feedback design is chosen
as

P.1, = _ yrQyk + urRu, (A3)
k--I

where Q = (Ci-l) r diag [1.e3 1.e3 2.e8 2.e8 2.e8]C? _ and R
[5X5.

B 2 ---

C I

_ 3.34150e + 03

A21 = 1--9.8070e + 00
I--3.6031e- 15
L-2.3357e- 16

Azz = Osxs,

3.8370e + 01
0

2.2144e - 01
0

-2.7672e - 01

"8.9024e + 01
0

- 1.1625e + 02
0
0

0 -3.9392e + 04 4.9534e - 12 2.0811e - 12 "]
3.3415e + 03 -4.9534e - 12 4.8609e - 12 -1.4472e - II1

-2.4664e - 15 4.9937e + 01 4.3604e - 15 -2.5089e - 02/ ,
1.9618e- 15 4.3604e- 15 9.5577e + 01 -9.0007e- 15/

-3.6031e - 15 -2.5089e - 02 -9.0007e - 15 -9.1324e - 01.1

3.8370e + 01 3.8370e + 01 3.8370e + 01 3.8370e + 01
8.9802e + 01 5.551@ + 01 -5.5514e + 01 -8.9802e + o1|

-1.5274e - 01 7.8453e - 02 7.8453e - 02 -1.527@- 01| ,
1.2154e - 01 -1.9674e - 01 1.967@- 01 -1.215_- Ol/

-8.5465e - 02 2.2388e - 01 2.2388e - 01 -8.5465e - 02J

o o
0 7.87_e + 03 0
0 0 0 6.25_e+03 .

9.5425e + Ol 0 -_5359e +03
-1.0725e + 02 0 -5.1813e + 03 0
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Introduction

XTENSIVE research has been conducted in active control
of dynamic systems. Achieving high control performance on

these systems usually requires an accurate model. Such a model can
be derived from system identification techniques using experimen-
tal data. Recently, a method was developed to identify a state-space
model from frequency response data for open-loop systems by us-
ing the state-space frequency domain identification algorithm.I This
method uses a matrix-fraction for the curve fitting, and the curve fit-
ting is reformulated as a linear problem that can be solved by the
ordinary least-squares method in one step.

A different method has been proposed to identify a state-space
plant from closed-loop I/O time-domain data with known feedback
dynamics. 2 This Note is an extension of this time-domain closed-
loop identification method to frequency domain. The method can
identify a linear open-loop stochastic system from closed-loop fre-
quency response test data with known feedback dynamics. The
relationship between the frequency response function (FRF) and
the closed-loop system and Kalman-filter Markov parameters is de-
rived for linear stochastic systems. Once the closed-loop system and
Kalman-filter Markov parameters are obtained from FRF, a recur-
sive formula for computing the open-loop system and the Kalman-
filter Markov parameters from the closed-loop system, Kalman filter
and controller Markov parameters can be used. Finally, the open-
loop system can be realized from the calculated open-loop system
Markov parameters.

Linear State-Space and FRF Relationship

A finite-dimensional, linear, discrete-time, time-invariant system
can be modeled as

xk+l = Ax_ + Buk + w_ (1)

Yk = Cxk + v_ (2)

where x e R n × 1 u E R s × I, y e R'" l are state, input, and output
vectors, respectively; wk is the process noise; vk is the measurement
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noise and [A, B, C] are the state-space parameters. Sequences wt
and vk are assumed Gaussian, white, and stationary with zero mean
and covariance matrices Q and R, respectively. One can derive a
steady-state filter innovation model l:

£k+l = A£k + Buk + AKs_ (3)

y,_ = C._k + ek (4)

where _ is the a priori estimated state, K is the steady-state Kalman-
filter gain, and e_ is the residual after filtering: ek = Yk - C._k. On the
other hand, a dynamic output feedback controller can be modeled
as

Pk+l = mdpk "at- Bdyk (5)

Uk = Cdpk + Ddyk + r_ (6)

where Ad, B#, Ca, and Dd are the system matrices of the controller,
p e R t ,, t is the controller state vector; and r e R"" t is the reference

input to the closed-loop system. Combining Eqs. (3) and (6), the
augmented closed-loop system dynamics become

_k+i = Aco_ + B_rk + AcKcek (7)

yt_ = Cd/_ + ek (8)

or

where

Ok+l = A_k + Bcrk + AcKcyk

IOk = , Ac =
Pk Bd C A d

G=[C 0], and A = &-A_K_G

(9)

The z transforms of Eqs. (8) and (9) yield ,--

y(z) = Ccrl(z) + e(z) (I0)

O(z) = (zlt - A)-I[A_K_y(z) + B_r(z)] (11)

where/, is an identity matrix with dimension t = n + I. Substituting
Eq. (11) into Eq. (10), one obtains

- I -l
y(z) = []m --Cc(z], -- A)- AcK_] C_(zl, - .4)-l Bcr(z)

+ [I,. - C_(zl, - A)-'A_K_]-'t(z) (12)

The z transforms of the dynamic output feedback controller (5)
and (6) and the closed-loop state-space model (7) and (8) yield

u(z) = _ Ya(k)z-ky(z) + r(z) (13)
k=O

Y(Z) = g_(k)z-kr(z) + N_(k)z-%(z) (14)
l=!
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where Yd(k) = CaAtd-IBa are the controller Markov parameters,

Yc (k ) = CcAt_- t Bc are the closed-loop-system Markov parameters,
and Arc(k) k- t= C¢Ac AcK_ are the closed-loop Kalman-filter Mar-

kov parameters. Note also that Ya(O) = Da and N¢(O) = Ira.

The transfer-function matrix of the system described by Eqs. (12)
and (14) is

- 1 -1

G(z-l)[lm - Ccfzlt - A)- AcKc] Cc(zI, - fi,)-lBc

= £ Yc(k)z-* (15)

k=l

The FRF is simply the transfer function matrix G(z -I) calculated

along the unit circle in the z plane. It is also chosen that the transfer

function matrix can be expressed by a left-fraction description I as

G(Z -l) = a -l (z-I)fl(z -l) (16)

where both a(z -I) and fl(z -I) are matrix polynomials and can be

found as a solution of the least-squares method. From Eq. (7.19) in
Ref. 1, one has

aiZ -i yc(i)z -i = fliZ -i

_ i=O / iml i=O

ao=lm, to=0 (17)

• From this relation, the closed-loop-system Markov parameters can

be recursively calculated from the estimated ot and fl matrix poly-

nomials by using the parameter convolution of polynomial products
as follows:

k

= t, -- _ ai rc (k -- i) (18)r,(k)
i=l

Similarly, the closed-loop Kalman-filter Markov parameters can be
recursively calculated from the estimated a matrix polynomials as
follows:

k

= -- _ aiNc(k -- i) (19)N_(k)

i=l

Then, from the closed-loop-system Markov parameters Yc(k) and

the closed-loop Kalman-filter Markov parameters N_(k), one can

recursively calculate 2 the open-loop-system Markov parameters

Y(k) = CA* - IB and the open-loop Kalman-filter Markov parame-

ters N(k) = CA* - l AK with the known controller Markov param-

eters Ya(k) = CaAka - t Ba,

J t

r(j) = r_(j) - ___ ___ r(i)rd(k - i)Y_(j k) (20)

k=t i=i

j t

N(j) No(j) ___ ___ Y(i)Yd(k -- i)Nc(j - k) (21)
k=l i=1

Note that Yd(O)=Da, Nc(0)=l,,, and Yc(0)=fl0. The open-

loop state-space model can be realized from the open-loop-system

Markov parameters through the singular value decomposition

method. _ Once the open-loop A and C are obtained, one can

easily calculate the open-loop Kalman filter gain from the open-

loop Kalman-filter Markov parameters N(k) in a least-squares
sense. 2

Numerical and Test Example

An example is provided that consists of numerical simulations
and actual hardware tests to validate the feasibility of the proposed

frequency-domain closed-loop identification method. The large-gap

magnetic suspension system 2 consists of a planar array of five cop-

per electromagnets that actively suspend a small cylinder with a

permanent magnet core. The cylinder is a rigid body and has six

independent degrees of freedom, namely, three displacements (x, y,

ENGINEERING NOTES

Table 1 Comparison of eigenvalues of discrete.time
analytical and identified model

Identified

from simulation Identified
Analytical model (1% noise variance) from testing

1.1687 1.1686 1.2892
1.1629 1.1595 1.2796
1.0101 1.0019 1.0327
0.9810 0.9794 0.9042
0.9977 4- 0.0257i 0.9051 4- 0.0983i 1.0094 4- 0.034 li

0.9920 4- 0.0133i 0.8546 4- 0.1947i 0.9972 4- 0.0221i
0.8633 4- 0.0009i 0.8749, 0.9323 0.84514- 0.2084i

10 0 ::::::::::::::; _ ;;;;;, ;:;;,;;,, ,:;::,;_:;;;;;_, ,,..,,:;;;:::;;;:: ,::::::;:,;: ;;:
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Fig. 1 Comparison of the closed-loop analytical (thin line) and recon.
structed (thick line) input-1/output-I FRFs. The reconstructed FRF is
obtained using the identified system matrices.

and z) and rotations (pitch, yaw, and roll). The roll of the cylinder
is uncontrollable, and is assumed to be motionless. Because it is

difficult to accurately model the magnetic field and its gradients, the

analytical model needs to be improved through identification from

experimental data. The discrete-time state-space parameters of the

system and the dynamic output feedback using a sampling rate of

250 Hz are shown in the Appendix.

Table 1 compares identified system eigenvalues with true ones

from numerical simulations. The results show perfect match when

there is no noise and quite good agreement even with 1% of pro-

cessing and measurement noises (1% noise variance). Figure 1 also

shows the comparison of the closed-loop analytical (thin line) and

reconstructed (thick line) input-l/output-1 FRFs.

Five experiments also were performed. In each'experiment, only

one of the five actuators had a single random reference input, and

all others had zero reference input. A total of 4096 data points at
a sampling rate of 250 Hz from each sensor were recorded. Six

FRFs from these single input/six output data can be derived. The

experiment is repeated by sending the same single random input to a

different actuator each time. Thirty FRFs were obtained. The order

of the matrix polynomial was set to 13. The identified eigenvalues

from testing are shown in Table 1.

Concluding Remarks

A method of identifying a linear state-space model of a plant
from closed-loop frequency response data with known feedback

dynamics is developed. The main contribution is the derivation of

the relationship between the open-loop-system Markov parame-

ters and the closed-loop frequency response function for a linear
stochastic system. Numerical simulations and experimental results

of a highly unstable large-gap magnetic suspension system are pre-
sented.
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Appendix: Analytical System and Controller Matrices

The matricesof Eqs. (I),(2),(5),and (6)are as follows:

m

1.1687 0.0006 --0.0000 0.0000 0.0000

-0.0000

-0.0000

-0.0000

0.0000

0.0000 0.0000 --0.0000 -0.0000 -0.0000"

1.1629 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000

0.0001 1.0178 -0.0017 -0.0037 0.0021 0.0074 --0.0127 0.0112 0.0006

0.0000 O.O001 1.0051 0.0001 0.0295 0.0006 0.0015 -0.0011 0.0003

0.0002 -0.0004 0.0008 1.0106 -0.0018 0.0223 0.0066 -0.0039 0.0030

0.0000 -0.0000 -0.0021 -0.0240 0.0005 0.9908 0.0028 -0.0010 0.0003 -0.0011

0.0000 -0.0001 -0_0064 -0.0001 -0.0213 -0.0041 0.9692 0.0064 0.0004 0.0003

-0.0000 -0.0000 0.0109 -0.0009 -0.0045 0.0021 0.0050 0.9260 -0.0549 0.0028

0.0000 -0.0000 -0.0086 0.0009 0.0032 0.0009 0.0031 --0.0589 0.9125 -0.0008

0.0000 -0.0000 0.0004 0.0002 0.0006 0.0012 0.0545 -0.0002 -0.0002 0.8652

n

0.0035 0.0706 0.0519 -0.0363 -0.0633"

-0.0434 -0.0326 -0.0340 -0.0425 -0.0396

0.0580 -0.0454 0.0983 -0.0361 0.0254

-0.0926 --0.0315 0.0881

0.1160 0.0124 0.0263

-0.1015 -0.0368 0.1033

0.1373 0.0057 0.0719

-0.0159 -0.0637 -0.1326

0.0158 -0.1531 -0.0261

0.0865 "0.0218

0.0982 -0.0242

0.0854 -0.0154

0.0859 -0.0066

0.1165 0.0625

0.0041 0.1245

-0.0484 -0.0800 -0.0513 -0.0553 -0.1009

C

-0.0313 0.4029 -0.0469 0.2269 -0.0381 -0.1961 0.1274 -0.0363 0.0198 -0.1513

0.0291 -0.4213 0.0006 0.2248 0.0290 -0.2097 -0.1079 -0.0130 0.0297 0.1502

-0.4423 0.1071 0.1809 0.0553 0.0669 -0.0618 -0.0906 -0.0418 -0.2228 -0.0472

-0.4254 -0.1184 -0.1787 -0.0092 -0.0829 0.0200 0.1217 -0.2197 -0.0559 0.0630

0.4495 -0.0763 0.0574 0.0273 -0.1861 -0.0400 0.1239 0.2109 0.0827 0.0464

0.3889 0.1015 -0.0614 0.0085 0.1739 0.0012 -0.1277 0.0386 0.1913 -0.0634

Ad io 33ooool0.3333 0 0 0

0 0.6000 0 0

0 0 0.6000 0

0 0 0 0.6000

nd

"--0.0206 0.0206 0 0 0

0 0 --0.0098 --0.0098 0.0098

0 0 0.0003 --0.0003 --0.0003

0 0 -0.0003 0.0003 -0.0003

0.0004 0.0004 0 0 0

oo°9 ]
0.0003 /

00003j

Cd = 1.Oe + 03*

"0.0796 0.0000 7.3872 0.0000 --5.5493 ]

0.1032 0.0716 -5.9772 4.3222 -1.7160 /

0.0886 0.0442 2.2836 -6.9917 4.4907 [

0.0886 -0.0442 2.2836 6.9917 " 4.4907[

0.1032 --0.0716 -5.9772 -4.3222 -1.7160]

I0.8171 3.9903 --7.0133 7.0133 7.0133

6.7151 -2.1362 11.2687 --8.3349 --3.0144

Dd= --2.1923 --9.7904 --7.9381 9.7505 --5.4144

--2.1923 --9.7904 3.6020 --5.4144 9.7505

6.7151 --2.1362 0.0807 --3.0144 --8.3349

-7.0133 7

0.0807[

3.6020 /

--7.93811

11.2687A
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